

Django Authentication Using LDAP

This is a Django authentication backend that authenticates against an LDAP
service. Configuration can be as simple as a single distinguished name
template, but there are many rich configuration options for working with users,
groups, and permissions.

	Documentation: https://django-auth-ldap.readthedocs.io/

	PyPI: https://pypi.org/project/django-auth-ldap/

	Repository: https://github.com/django-auth-ldap/django-auth-ldap

	Tests: http://travis-ci.org/django-auth-ldap/django-auth-ldap

	License: BSD 2-Clause

This version is supported on Python 2.7 and 3.4+; and Django 1.11+. It requires
python-ldap [https://pypi.org/project/python-ldap/] >= 3.0.

	Installation

	Authentication
	Server Config

	Search/Bind

	Direct Bind

	Customizing Authentication

	Notes

	Working With Groups
	Types of Groups

	Finding Groups

	Limiting Access

	User objects
	Populating Users

	Easy Attributes

	Updating Users

	Direct Attribute Access

	Permissions
	Using Groups Directly

	Group Mirroring

	Non-LDAP Users

	Multiple LDAP Configs

	Custom Behavior
	Subclassing LDAPBAckend

	Using default_settings

	Overriding default_settings

	Logging

	Performance

	Example Configuration

	Reference
	Settings

	Module Properties

	Configuration

	Backend

	Change Log
	2.0.0 - 2019-06-05

	1.6.1 - 2018-06-02

	1.6.0 - 2018-06-02

	1.5.0 - 2018-04-18

	1.4.0 - 2018-03-22

	1.3.0 - 2017-11-20

	1.2.16 - 2017-09-30

	1.2.15 - 2017-08-17

	1.2.14 - 2017-07-24

	1.2.13 - 2017-06-19

	1.2.12 - 2017-05-20

	1.2.11 - 2017-04-22

	1.2.9 - 2017-02-14

	1.2.8 - 2016-04-18

	1.2.7 - 2015-09-29

	1.2.6 - 2015-03-29

	1.2.5 - 2015-01-30

	1.2.4 - 2014-12-28

	1.2.3 - 2014-11-18

	1.2.2 - 2014-09-22

	1.2.1 - 2014-08-24

	1.2.0 - 2014-04-10

	1.1.8 - 2014-02-01

	1.1.7 - 2013-11-19

	1.1.5 - 2013-10-25

	1.1.4 - 2013-03-09

	1.1.3 - 2013-01-05

	Contributing
	Development

License

Copyright (c) 2009, Peter Sagerson
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Installation

Install the package with pip:

$ pip install django-auth-ldap

It requires python-ldap [https://pypi.org/project/python-ldap/] >= 3.0. You’ll need the OpenLDAP [https://www.openldap.org/] libraries and
headers available on your system.

To use the auth backend in a Django project, add
'django_auth_ldap.backend.LDAPBackend' to
AUTHENTICATION_BACKENDS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS]. Do not add anything to
INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS].

AUTHENTICATION_BACKENDS = ["django_auth_ldap.backend.LDAPBackend"]

LDAPBackend should work with custom user
models, but it does assume that a database is present.

Note

LDAPBackend does not inherit from
ModelBackend [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.backends.ModelBackend]. It is possible to use
LDAPBackend exclusively by configuring
it to draw group membership from the LDAP server. However, if you would
like to assign permissions to individual users or add users to groups
within Django, you’ll need to have both backends installed:

AUTHENTICATION_BACKENDS = [
 "django_auth_ldap.backend.LDAPBackend",
 "django.contrib.auth.backends.ModelBackend",
]

Authentication

Server Config

If your LDAP server isn’t running locally on the default port, you’ll want to
start by setting AUTH_LDAP_SERVER_URI to point to your server. The
value of this setting can be anything that your LDAP library supports. For
instance, openldap may allow you to give a comma- or space-separated list of
URIs to try in sequence.

AUTH_LDAP_SERVER_URI = "ldap://ldap.example.com"

If your server location is even more dynamic than this, you may provide a
function (or any callable object) that returns the URI. The callable is passed
a single positional argument: request. You should assume that this will be
called on every request, so if it’s an expensive operation, some caching is in
order.

from my_module import find_my_ldap_server

AUTH_LDAP_SERVER_URI = find_my_ldap_server

If you need to configure any python-ldap options, you can set
AUTH_LDAP_GLOBAL_OPTIONS and/or
AUTH_LDAP_CONNECTION_OPTIONS. For example, disabling referrals is not
uncommon:

import ldap

AUTH_LDAP_CONNECTION_OPTIONS = {ldap.OPT_REFERRALS: 0}

Changed in version 1.7.0: When AUTH_LDAP_SERVER_URI is set to a callable, it is now passed a
positional request argument. Support for no arguments will continue for
backwards compatibility but will be removed in a future version.

Search/Bind

Now that you can talk to your LDAP server, the next step is to authenticate a
username and password. There are two ways to do this, called search/bind and
direct bind. The first one involves connecting to the LDAP server either
anonymously or with a fixed account and searching for the distinguished name of
the authenticating user. Then we can attempt to bind again with the user’s
password. The second method is to derive the user’s DN from his username and
attempt to bind as the user directly.

Because LDAP searches appear elsewhere in the configuration, the
LDAPSearch class is provided to encapsulate
search information. In this case, the filter parameter should contain the
placeholder %(user)s. A simple configuration for the search/bind approach
looks like this (some defaults included for completeness):

import ldap
from django_auth_ldap.config import LDAPSearch

AUTH_LDAP_BIND_DN = ""
AUTH_LDAP_BIND_PASSWORD = ""
AUTH_LDAP_USER_SEARCH = LDAPSearch(
 "ou=users,dc=example,dc=com", ldap.SCOPE_SUBTREE, "(uid=%(user)s)"
)

This will perform an anonymous bind, search under
"ou=users,dc=example,dc=com" for an object with a uid matching the user’s
name, and try to bind using that DN and the user’s password. The search must
return exactly one result or authentication will fail. If you can’t search
anonymously, you can set AUTH_LDAP_BIND_DN to the distinguished name
of an authorized user and AUTH_LDAP_BIND_PASSWORD to the password.

Search Unions

New in version 1.1.

If you need to search in more than one place for a user, you can use
LDAPSearchUnion. This takes multiple
LDAPSearch objects and returns the union of the results. The precedence of the
underlying searches is unspecified.

import ldap
from django_auth_ldap.config import LDAPSearch, LDAPSearchUnion

AUTH_LDAP_USER_SEARCH = LDAPSearchUnion(
 LDAPSearch("ou=users,dc=example,dc=com", ldap.SCOPE_SUBTREE, "(uid=%(user)s)"),
 LDAPSearch("ou=otherusers,dc=example,dc=com", ldap.SCOPE_SUBTREE, "(uid=%(user)s)"),
)

Direct Bind

To skip the search phase, set AUTH_LDAP_USER_DN_TEMPLATE to a
template that will produce the authenticating user’s DN directly. This template
should have one placeholder, %(user)s. If the first example had used
ldap.SCOPE_ONELEVEL, the following would be a more straightforward (and
efficient) equivalent:

AUTH_LDAP_USER_DN_TEMPLATE = "uid=%(user)s,ou=users,dc=example,dc=com"

Customizing Authentication

New in version 1.3.

It is possible to further customize the authentication process by subclassing
LDAPBackend and overriding
authenticate_ldap_user(). The first
argument is the unauthenticated ldap_user, the second is the
supplied password. The intent is to give subclasses a simple pre- and
post-authentication hook.

If a subclass decides to proceed with the authentication, it must call the
inherited implementation. It may then return either the authenticated user or
None. The behavior of any other return value–such as substituting a
different user object–is undefined. User objects has more on managing Django
user objects.

Obviously, it is always safe to access ldap_user.dn before authenticating
the user. Accessing ldap_user.attrs and others should be safe unless you’re
relying on special binding behavior, such as
AUTH_LDAP_BIND_AS_AUTHENTICATING_USER.

Notes

LDAP is fairly flexible when it comes to matching DNs.
LDAPBackend makes an effort to accommodate
this by forcing usernames to lower case when creating Django users and trimming
whitespace when authenticating.

Some LDAP servers are configured to allow users to bind without a password. As a
precaution against false positives,
LDAPBackend will summarily reject any
authentication attempt with an empty password. You can disable this behavior by
setting AUTH_LDAP_PERMIT_EMPTY_PASSWORD to True.

By default, all LDAP operations are performed with the
AUTH_LDAP_BIND_DN and AUTH_LDAP_BIND_PASSWORD credentials,
not with the user’s. Otherwise, the LDAP connection would be bound as the
authenticating user during login requests and as the default credentials during
other requests, so you might see inconsistent LDAP attributes depending on the
nature of the Django view. If you’re willing to accept the inconsistency in
order to retrieve attributes while bound as the authenticating user, see
AUTH_LDAP_BIND_AS_AUTHENTICATING_USER.

By default, LDAP connections are unencrypted and make no attempt to protect
sensitive information, such as passwords. When communicating with an LDAP server
on localhost or on a local network, this might be fine. If you need a secure
connection to the LDAP server, you can either use an ldaps:// URL or enable
the StartTLS extension. The latter is generally the preferred mechanism. To
enable StartTLS, set AUTH_LDAP_START_TLS to True:

AUTH_LDAP_START_TLS = True

If LDAPBackend receives an
LDAPError [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPError] from python_ldap, it will normally swallow it and log a
warning. If you’d like to perform any special handling for these exceptions, you
can add a signal handler to django_auth_ldap.backend.ldap_error. The
signal handler can handle the exception any way you like, including re-raising
it or any other exception.

Working With Groups

Types of Groups

Working with groups in LDAP can be a tricky business, mostly because there are
so many different kinds. This module includes an extensible API for working with
any kind of group and includes implementations for the most common ones.
LDAPGroupType is a base class whose concrete
subclasses can determine group membership for particular grouping mechanisms.
Four built-in subclasses cover most grouping mechanisms:

	PosixGroupType

	MemberDNGroupType

	NestedMemberDNGroupType

posixGroup and nisNetgroup objects are somewhat specialized, so they get their
own classes. The other two cover mechanisms whereby a group object stores a list
of its members as distinguished names. This includes groupOfNames,
groupOfUniqueNames, and Active Directory groups, among others. The nested
variant allows groups to contain other groups, to as many levels as you like.
For convenience and readability, several trivial subclasses of the above are
provided:

	GroupOfNamesType

	NestedGroupOfNamesType

	GroupOfUniqueNamesType

	NestedGroupOfUniqueNamesType

	ActiveDirectoryGroupType

	NestedActiveDirectoryGroupType

	OrganizationalRoleGroupType

	NestedOrganizationalRoleGroupType

Finding Groups

To get started, you’ll need to provide some basic information about your LDAP
groups. AUTH_LDAP_GROUP_SEARCH is an
LDAPSearch object that identifies the set of
relevant group objects. That is, all groups that users might belong to as well
as any others that we might need to know about (in the case of nested groups,
for example). AUTH_LDAP_GROUP_TYPE is an instance of the class
corresponding to the type of group that will be returned by
AUTH_LDAP_GROUP_SEARCH. All groups referenced elsewhere in the
configuration must be of this type and part of the search results.

import ldap
from django_auth_ldap.config import LDAPSearch, GroupOfNamesType

AUTH_LDAP_GROUP_SEARCH = LDAPSearch(
 "ou=groups,dc=example,dc=com", ldap.SCOPE_SUBTREE, "(objectClass=groupOfNames)"
)
AUTH_LDAP_GROUP_TYPE = GroupOfNamesType()

Limiting Access

The simplest use of groups is to limit the users who are allowed to log in. If
AUTH_LDAP_REQUIRE_GROUP is set, then only users who are members of
that group will successfully authenticate. AUTH_LDAP_DENY_GROUP is
the reverse: if given, members of this group will be rejected.

AUTH_LDAP_REQUIRE_GROUP = "cn=enabled,ou=groups,dc=example,dc=com"
AUTH_LDAP_DENY_GROUP = "cn=disabled,ou=groups,dc=example,dc=com"

However, these two settings alone may not be enough to satisfy your needs. In
such cases, you can use the LDAPGroupQuery
object to perform more complex matches against a user’s groups. For example:

from django_auth_ldap.config import LDAPGroupQuery

AUTH_LDAP_REQUIRE_GROUP = (
 LDAPGroupQuery("cn=enabled,ou=groups,dc=example,dc=com")
 | LDAPGroupQuery("cn=also_enabled,ou=groups,dc=example,dc=com")
) & ~LDAPGroupQuery("cn=disabled,ou=groups,dc=example,dc=com")

It is important to note a couple features of the example above. First and foremost,
this handles the case of both AUTH_LDAP_REQUIRE_GROUP and AUTH_LDAP_DENY_GROUP
in one setting. Second, you can use three operators on these queries: &, |,
and ~: and, or, and not, respectively.

When groups are configured, you can always get the list of a user’s groups from
user.ldap_user.group_dns or user.ldap_user.group_names. More advanced
uses of groups are covered in the next two sections.

User objects

Authenticating against an external source is swell, but Django’s auth module is
tightly bound to a user model. When a user logs in, we have to create a model
object to represent them in the database. Because the LDAP search is
case-insensitive, the default implementation also searches for existing Django
users with an iexact query and new users are created with lowercase usernames.
See get_or_build_user() if you’d
like to override this behavior. See
get_user_model() if you’d like to
substitute a proxy model.

By default, lookups on existing users are done using the user model’s
USERNAME_FIELD [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.USERNAME_FIELD]. To lookup by a
different field, use AUTH_LDAP_USER_QUERY_FIELD. When set, the
username field is ignored.

When using the default for lookups, the only required field for a user is the
username. The default User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User] model can be
picky about the characters allowed in usernames, so
LDAPBackend includes a pair of hooks,
ldap_to_django_username() and
django_to_ldap_username(), to
translate between LDAP usernames and Django usernames. You may need this, for
example, if your LDAP names have periods in them. You can subclass
LDAPBackend to implement these hooks; by
default the username is not modified. User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User]
objects that are authenticated by
LDAPBackend will have an ldap_username
attribute with the original (LDAP) username.
username [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User.username] (or
get_username() [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser.get_username]) will, of
course, be the Django username.

Note

Users created by LDAPBackend will have an
unusable password set. This will only happen when the user is created, so if
you set a valid password in Django, the user will be able to log in through
ModelBackend [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.backends.ModelBackend] (if configured) even if
they are rejected by LDAP. This is not generally recommended, but could be
useful as a fail-safe for selected users in case the LDAP server is
unavailable.

Populating Users

You can perform arbitrary population of your user models by adding listeners to
the Django signal [https://docs.djangoproject.com/en/stable/topics/signals/#module-django.dispatch]:
django_auth_ldap.backend.populate_user. This signal is sent after the
user object has been constructed (but not necessarily saved) and any configured
attribute mapping has been applied (see below). You can use this to propagate
information from the LDAP directory to the user object any way you like. If you
need the user object to exist in the database at this point, you can save it in
your signal handler or override
get_or_build_user(). In either case,
the user instance will be saved automatically after the signal handlers are run.

If you need an attribute that isn’t included by default in the LDAP search
results, see AUTH_LDAP_USER_ATTRLIST.

Easy Attributes

If you just want to copy a few attribute values directly from the user’s LDAP
directory entry to their Django user, the setting,
AUTH_LDAP_USER_ATTR_MAP, makes it easy. This is a dictionary that
maps user model keys, respectively, to (case-insensitive) LDAP attribute
names:

AUTH_LDAP_USER_ATTR_MAP = {"first_name": "givenName", "last_name": "sn"}

Only string fields can be mapped to attributes. Boolean fields can be defined by
group membership:

AUTH_LDAP_USER_FLAGS_BY_GROUP = {
 "is_active": "cn=active,ou=groups,dc=example,dc=com",
 "is_staff": (
 LDAPGroupQuery("cn=staff,ou=groups,dc=example,dc=com")
 | LDAPGroupQuery("cn=admin,ou=groups,dc=example,dc=com")
),
 "is_superuser": "cn=superuser,ou=groups,dc=example,dc=com",
}

Values in this dictionary may be simple DNs (as strings), lists or tuples of
DNs, or LDAPGroupQuery instances. Lists are
converted to queries joined by |.

Remember that if these settings don’t do quite what you want, you can always use
the signals described in the previous section to implement your own logic.

Updating Users

By default, all mapped user fields will be updated each time the user logs in.
To disable this, set AUTH_LDAP_ALWAYS_UPDATE_USER to False. If
you need to populate a user outside of the authentication process—for example,
to create associated model objects before the user logs in for the first
time—you can call django_auth_ldap.backend.LDAPBackend.populate_user().
You’ll need an instance of LDAPBackend, which
you should feel free to create yourself.
populate_user() returns the
User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User] or None if the user could not be
found in LDAP.

from django_auth_ldap.backend import LDAPBackend

user = LDAPBackend().populate_user("alice")
if user is None:
 raise Exception("No user named alice")

Direct Attribute Access

If you need to access multi-value attributes or there is some other reason that
the above is inadequate, you can also access the user’s raw LDAP attributes.
user.ldap_user is an object with four public properties. The group
properties are, of course, only valid if groups are configured.

	dn: The user’s distinguished name.

	attrs: The user’s LDAP attributes as a dictionary of lists of string
values. The dictionaries are modified to use case-insensitive keys.

	group_dns: The set of groups that this user belongs to, as DNs.

	group_names: The set of groups that this user belongs to, as simple
names. These are the names that will be used if
AUTH_LDAP_MIRROR_GROUPS is used.

Python-ldap returns all attribute values as utf8-encoded strings. For
convenience, this module will try to decode all values into Unicode strings. Any
string that can not be successfully decoded will be left as-is; this may apply
to binary values such as Active Directory’s objectSid.

Permissions

Groups are useful for more than just populating the user’s is_* fields.
LDAPBackend would not be complete without
some way to turn a user’s LDAP group memberships into Django model permissions.
In fact, there are two ways to do this.

Ultimately, both mechanisms need some way to map LDAP groups to Django groups.
Implementations of LDAPGroupType will have an
algorithm for deriving the Django group name from the LDAP group. Clients that
need to modify this behavior can subclass the
LDAPGroupType class. All of the built-in
implementations take a name_attr argument to __init__, which
specifies the LDAP attribute from which to take the Django group name. By
default, the cn attribute is used.

Using Groups Directly

The least invasive way to map group permissions is to set
AUTH_LDAP_FIND_GROUP_PERMS to True.
LDAPBackend will then find all of the LDAP
groups that a user belongs to, map them to Django groups, and load the
permissions for those groups. You will need to create the Django groups and
associate permissions yourself, generally through the admin interface.

To minimize traffic to the LDAP server,
LDAPBackend can make use of Django’s cache
framework to keep a copy of a user’s LDAP group memberships. To enable this
feature, set AUTH_LDAP_CACHE_TIMEOUT, which determines the timeout
of cache entries in seconds.

AUTH_LDAP_CACHE_TIMEOUT = 3600

Group Mirroring

The second way to turn LDAP group memberships into permissions is to mirror the
groups themselves. This approach has some important disadvantages and should be
avoided if possible. For one thing, membership will only be updated when the
user authenticates, which may be especially inappropriate for sites with long
session timeouts.

If AUTH_LDAP_MIRROR_GROUPS is True, then every time a user logs
in, LDAPBackend will update the database with
the user’s LDAP groups. Any group that doesn’t exist will be created and the
user’s Django group membership will be updated to exactly match their LDAP group
membership. If the LDAP server has nested groups, the Django database will end
up with a flattened representation. For group mirroring to have any effect, you
of course need ModelBackend [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.backends.ModelBackend] installed as
an authentication backend.

By default, we assume that LDAP is the sole authority on group membership; if
you remove a user from a group in LDAP, they will be removed from the
corresponding Django group the next time they log in. It is also possible to
have django-auth-ldap ignore some Django groups, presumably because they are
managed manually or through some other mechanism. If
AUTH_LDAP_MIRROR_GROUPS is a list of group names, we will manage
these groups and no others. If AUTH_LDAP_MIRROR_GROUPS_EXCEPT is a
list of group names, we will manage all groups except those named;
AUTH_LDAP_MIRROR_GROUPS is ignored in this case.

Non-LDAP Users

LDAPBackend has one more feature pertaining
to permissions, which is the ability to handle authorization for users that it
did not authenticate. For example, you might be using
RemoteUserBackend [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.backends.RemoteUserBackend]
to map externally authenticated users to Django users. By setting
AUTH_LDAP_AUTHORIZE_ALL_USERS,
LDAPBackend will map these users to LDAP
users in the normal way in order to provide authorization information. Note that
this does not work with AUTH_LDAP_MIRROR_GROUPS; group mirroring is
a feature of authentication, not authorization.

Multiple LDAP Configs

New in version 1.1.

You’ve probably noticed that all of the settings for this backend have the
prefix AUTH_LDAP_. This is the default, but it can be customized by subclasses
of LDAPBackend. The main reason you would
want to do this is to create two backend subclasses that reference different
collections of settings and thus operate independently. For example, you might
have two separate LDAP servers that you want to authenticate against. A short
example should demonstrate this:

mypackage.ldap

from django_auth_ldap.backend import LDAPBackend

class LDAPBackend1(LDAPBackend):
 settings_prefix = "AUTH_LDAP_1_"

class LDAPBackend2(LDAPBackend):
 settings_prefix = "AUTH_LDAP_2_"

settings.py

AUTH_LDAP_1_SERVER_URI = "ldap://ldap1.example.com"
AUTH_LDAP_1_USER_DN_TEMPLATE = "uid=%(user)s,ou=users,dc=example,dc=com"

AUTH_LDAP_2_SERVER_URI = "ldap://ldap2.example.com"
AUTH_LDAP_2_USER_DN_TEMPLATE = "uid=%(user)s,ou=users,dc=example,dc=com"

AUTHENTICATION_BACKENDS = ("mypackage.ldap.LDAPBackend1", "mypackage.ldap.LDAPBackend2")

All of the usual rules apply: Django will attempt to authenticate a user with
each backend in turn until one of them succeeds. When a particular backend
successfully authenticates a user, that user will be linked to the backend for
the duration of their session.

Note

Due to its global nature, AUTH_LDAP_GLOBAL_OPTIONS ignores the
settings prefix. Regardless of how many backends are installed, this setting
is referenced once by its default name at the time we load the ldap module.

Custom Behavior

There are times that the default LDAPBackend
behavior may be insufficient for your needs. In those cases, you can further
customize the behavior by following these general steps:

	Create your own LDAPBackend subclass.

	Use default_settings to define
any custom settings you may want to use.

	Override authenticate_ldap_user()
hook and/or any other method as needed.

	Define additional methods and attributes as needed.

	Access your custom settings via self.settings inside your
LDAPBackend subclass.

Subclassing LDAPBAckend

You can implement your own LDAPBackend subclass
if you need some custom behavior. For example, you want to only allow 50 login
attempts every 30 minutes, and those numbers may change as needed. Furthermore,
any successful login attempt against the LDAP server must send out an SMS
notification, but there should be an option to limit this behavior to a
specific set of usernames based on a regex. One can accomplish that by doing
something like this:

mypackage.ldap

import re

from django.core.cache import cache

from django_auth_ldap.backend import LDAPBackend

class CustomLDAPBackend(LDAPBackend):
 default_settings = {
 "LOGIN_COUNTER_KEY": "CUSTOM_LDAP_LOGIN_ATTEMPT_COUNT",
 "LOGIN_ATTEMPT_LIMIT": 50,
 "RESET_TIME": 30 * 60,
 "USERNAME_REGEX": r"^.*$",
 }

 def authenticate_ldap_user(self, ldap_user, password):
 if self.exceeded_login_attempt_limit():
 # Or you can raise a 403 if you do not want
 # to continue checking other auth backends
 print("Login attempts exceeded.")
 return None
 self.increment_login_attempt_count()
 user = ldap_user.authenticate(password)
 if user and self.username_matches_regex(user.username):
 self.send_sms(user.username)
 return user

 @property
 def login_attempt_count(self):
 return cache.get_or_set(
 self.settings.LOGIN_COUNTER_KEY, 0, self.settings.RESET_TIME
)

 def increment_login_attempt_count(self):
 try:
 cache.incr(self.settings.LOGIN_COUNTER_KEY)
 except ValueError:
 cache.set(self.settings.LOGIN_COUNTER_KEY, 1, self.settings.RESET_TIME)

 def exceeded_login_attempt_limit(self):
 return self.login_attempt_count >= self.settings.LOGIN_ATTEMPT_LIMIT

 def username_matches_regex(self, username):
 return re.match(self.settings.USERNAME_REGEX, username)

 def send_sms(self, username):
 # Implement your SMS logic here
 print("SMS sent!")

settings.py

AUTHENTICATION_BACKENDS = [
 # ...
 "mypackage.ldap.CustomLDAPBackend",
 # ...
]

Using default_settings

While you can use your own custom Django settings to create something similar
to the sample code above, there are a couple of advantages in using
default_settings instead.

Following the sample code above, one advantage is that the subclass will now
automatically check your Django settings for AUTH_LDAP_LOGIN_COUNTER_KEY,
AUTH_LDAP_LOGIN_ATTEMPT_LIMIT, AUTH_LDAP_RESET_TIME, and
AUTH_LDAP_USERNAME_REGEX. Another advantage is that for each setting not
explicitly defined in your Django settings, the subclass will then use the
corresponding default values. This behavior will be very handy in case you
will need to override certain settings.

Overriding default_settings

If down the line, you want to increase the login attempt limit to 100 every
15 minutes, and you only want SMS notifications for usernames with a “zz_”
prefix, then you can simply modify your settings.py like so.

settings.py

AUTH_LDAP_LOGIN_ATTEMPT_LIMIT = 100
AUTH_LDAP_RESET_TIME = 15 * 60
AUTH_LDAP_USERNAME_REGEX = r"^zz_.*$"

AUTHENTICATION_BACKENDS = [
 # ...
 "mypackage.ldap.CustomLDAPBackend",
 # ...
]

If the settings_prefix of the
subclass was also changed, then the prefix must also be used in your settings.
For example, if the prefix was changed to “AUTH_LDAP_1_”, then it should look
like this.

settings.py

AUTH_LDAP_1_LOGIN_ATTEMPT_LIMIT = 100
AUTH_LDAP_1_RESET_TIME = 15 * 60
AUTH_LDAP_1_USERNAME_REGEX = r"^zz_.*$"

AUTHENTICATION_BACKENDS = [
 # ...
 "mypackage.ldap.CustomLDAPBackend",
 # ...
]

Logging

LDAPBackend uses the standard Python
logging [https://docs.python.org/3/library/logging.html#module-logging] module to log debug and warning messages to the logger named
'django_auth_ldap'. If you need debug messages to help with configuration
issues, you should add a handler to this logger. Using Django’s
LOGGING [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-LOGGING] setting, you can add an entry to your config.

LOGGING = {
 "version": 1,
 "disable_existing_loggers": False,
 "handlers": {"console": {"class": "logging.StreamHandler"}},
 "loggers": {"django_auth_ldap": {"level": "DEBUG", "handlers": ["console"]}},
}

Performance

LDAPBackend is carefully designed not to
require a connection to the LDAP service for every request. Of course, this
depends heavily on how it is configured. If LDAP traffic or latency is a concern
for your deployment, this section has a few tips on minimizing it, in decreasing
order of impact.

	Cache groups. If AUTH_LDAP_FIND_GROUP_PERMS is True, the
default behavior is to reload a user’s group memberships on every request.
This is the safest behavior, as any membership change takes effect
immediately, but it is expensive. If possible, set
AUTH_LDAP_CACHE_TIMEOUT to remove most of this traffic.

	Don’t access user.ldap_user.*. Except for ldap_user.dn, these
properties are only cached on a per-request basis. If you can propagate LDAP
attributes to a User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User], they will only be
updated at login. user.ldap_user.attrs triggers an LDAP connection for
every request in which it’s accessed.

	Use simpler group types. Some grouping mechanisms are more expensive than
others. This will often be outside your control, but it’s important to note
that the extra functionality of more complex group types like
NestedGroupOfNamesType is not free and will
generally require a greater number and complexity of LDAP queries.

	Use direct binding. Binding with AUTH_LDAP_USER_DN_TEMPLATE is
a little bit more efficient than relying on AUTH_LDAP_USER_SEARCH.
Specifically, it saves two LDAP operations (one bind and one search) per
login.

Example Configuration

Here is a complete example configuration from settings.py that
exercises nearly all of the features. In this example, we’re authenticating
against a global pool of users in the directory, but we have a special area set
aside for Django groups (ou=django,ou=groups,dc=example,dc=com). Remember
that most of this is optional if you just need simple authentication. Some
default settings and arguments are included for completeness.

import ldap
from django_auth_ldap.config import LDAPSearch, GroupOfNamesType

Baseline configuration.
AUTH_LDAP_SERVER_URI = "ldap://ldap.example.com"

AUTH_LDAP_BIND_DN = "cn=django-agent,dc=example,dc=com"
AUTH_LDAP_BIND_PASSWORD = "phlebotinum"
AUTH_LDAP_USER_SEARCH = LDAPSearch(
 "ou=users,dc=example,dc=com", ldap.SCOPE_SUBTREE, "(uid=%(user)s)"
)
Or:
AUTH_LDAP_USER_DN_TEMPLATE = 'uid=%(user)s,ou=users,dc=example,dc=com'

Set up the basic group parameters.
AUTH_LDAP_GROUP_SEARCH = LDAPSearch(
 "ou=django,ou=groups,dc=example,dc=com",
 ldap.SCOPE_SUBTREE,
 "(objectClass=groupOfNames)",
)
AUTH_LDAP_GROUP_TYPE = GroupOfNamesType(name_attr="cn")

Simple group restrictions
AUTH_LDAP_REQUIRE_GROUP = "cn=enabled,ou=django,ou=groups,dc=example,dc=com"
AUTH_LDAP_DENY_GROUP = "cn=disabled,ou=django,ou=groups,dc=example,dc=com"

Populate the Django user from the LDAP directory.
AUTH_LDAP_USER_ATTR_MAP = {
 "first_name": "givenName",
 "last_name": "sn",
 "email": "mail",
}

AUTH_LDAP_USER_FLAGS_BY_GROUP = {
 "is_active": "cn=active,ou=django,ou=groups,dc=example,dc=com",
 "is_staff": "cn=staff,ou=django,ou=groups,dc=example,dc=com",
 "is_superuser": "cn=superuser,ou=django,ou=groups,dc=example,dc=com",
}

This is the default, but I like to be explicit.
AUTH_LDAP_ALWAYS_UPDATE_USER = True

Use LDAP group membership to calculate group permissions.
AUTH_LDAP_FIND_GROUP_PERMS = True

Cache distinguised names and group memberships for an hour to minimize
LDAP traffic.
AUTH_LDAP_CACHE_TIMEOUT = 3600

Keep ModelBackend around for per-user permissions and maybe a local
superuser.
AUTHENTICATION_BACKENDS = (
 "django_auth_ldap.backend.LDAPBackend",
 "django.contrib.auth.backends.ModelBackend",
)

Reference

Settings

AUTH_LDAP_ALWAYS_UPDATE_USER

Default: True

If True, the fields of a User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User] object
will be updated with the latest values from the LDAP directory every time the
user logs in. Otherwise the User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User] object
will only be populated when it is automatically created.

AUTH_LDAP_AUTHORIZE_ALL_USERS

Default: False

If True, LDAPBackend will be able furnish
permissions for any Django user, regardless of which backend authenticated it.

AUTH_LDAP_BIND_AS_AUTHENTICATING_USER

Default: False

If True, authentication will leave the LDAP connection bound as the
authenticating user, rather than forcing it to re-bind with the default
credentials after authentication succeeds. This may be desirable if you do not
have global credentials that are able to access the user’s attributes.
django-auth-ldap never stores the user’s password, so this only applies to
requests where the user is authenticated. Thus, the downside to this setting is
that LDAP results may vary based on whether the user was authenticated earlier
in the Django view, which could be surprising to code not directly concerned
with authentication.

AUTH_LDAP_BIND_DN

Default: '' (Empty string)

The distinguished name to use when binding to the LDAP server (with
AUTH_LDAP_BIND_PASSWORD). Use the empty string (the default) for an
anonymous bind. To authenticate a user, we will bind with that user’s DN and
password, but for all other LDAP operations, we will be bound as the DN in this
setting. For example, if AUTH_LDAP_USER_DN_TEMPLATE is not set, we’ll
use this to search for the user. If AUTH_LDAP_FIND_GROUP_PERMS is
True, we’ll also use it to determine group membership.

AUTH_LDAP_BIND_PASSWORD

Default: '' (Empty string)

The password to use with AUTH_LDAP_BIND_DN.

AUTH_LDAP_CACHE_TIMEOUT

Default: 0

The value determines the amount of time, in seconds, a user’s group memberships
and distinguished name are cached. The value 0, the default, disables
caching entirely.

Changed in version 1.6.0: Previously caching was controlled by the settings AUTH_LDAP_CACHE_GROUPS
and AUTH_LDAP_GROUP_CACHE_TIMEOUT. If AUTH_LDAP_CACHE_GROUPS is set,
the AUTH_LDAP_CACHE_TIMEOUT value is derievd from these deprecated
settings.

AUTH_LDAP_CONNECTION_OPTIONS

Default: {}

A dictionary of options to pass to each connection to the LDAP server via
LDAPObject.set_option() [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPObject.set_option]. Keys are
ldap.OPT_* [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap-options] constants.

AUTH_LDAP_DENY_GROUP

Default: None

The distinguished name of a group; authentication will fail for any user
that belongs to this group.

AUTH_LDAP_FIND_GROUP_PERMS

Default: False

If True, LDAPBackend will furnish group
permissions based on the LDAP groups the authenticated user belongs to.
AUTH_LDAP_GROUP_SEARCH and AUTH_LDAP_GROUP_TYPE must also be
set.

AUTH_LDAP_GLOBAL_OPTIONS

Default: {}

A dictionary of options to pass to ldap.set_option() [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.set_option]. Keys are
ldap.OPT_* [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap-options] constants.

Note

Due to its global nature, this setting ignores the settings prefix. Regardless of how many backends are installed, this setting
is referenced once by its default name at the time we load the ldap module.

AUTH_LDAP_GROUP_SEARCH

Default: None

An LDAPSearch object that finds all LDAP
groups that users might belong to. If your configuration makes any references to
LDAP groups, this and AUTH_LDAP_GROUP_TYPE must be set.

AUTH_LDAP_GROUP_TYPE

Default: None

An LDAPGroupType instance describing the type
of group returned by AUTH_LDAP_GROUP_SEARCH.

AUTH_LDAP_MIRROR_GROUPS

Default: None

If True, LDAPBackend will mirror a user’s
LDAP group membership in the Django database. Any time a user authenticates, we
will create all of their LDAP groups as Django groups and update their Django
group membership to exactly match their LDAP group membership. If the LDAP
server has nested groups, the Django database will end up with a flattened
representation.

This can also be a list or other collection of group names, in which case we’ll
only mirror those groups and leave the rest alone. This is ignored if
AUTH_LDAP_MIRROR_GROUPS_EXCEPT is set.

AUTH_LDAP_MIRROR_GROUPS_EXCEPT

Default: None

If this is not None, it must be a list or other collection of group names.
This will enable group mirroring, except that we’ll never change the membership
of the indicated groups. AUTH_LDAP_MIRROR_GROUPS is ignored in this
case.

AUTH_LDAP_PERMIT_EMPTY_PASSWORD

Default: False

If False (the default), authentication with an empty password will fail
immediately, without any LDAP communication. This is a secure default, as some
LDAP servers are configured to allow binds to succeed with no password, perhaps
at a reduced level of access. If you need to make use of this LDAP feature, you
can change this setting to True.

AUTH_LDAP_REQUIRE_GROUP

Default: None

The distinguished name of a group; authentication will fail for any user that
does not belong to this group. This can also be an
LDAPGroupQuery instance.

AUTH_LDAP_NO_NEW_USERS

Default: False

Prevent the creation of new users during authentication. Any users not already
in the Django user database will not be able to login.

AUTH_LDAP_SERVER_URI

Default: 'ldap://localhost'

The URI of the LDAP server. This can be any URI that is supported by your
underlying LDAP libraries. Can also be a callable that returns the URI. The
callable is passed a single positional argument: request.

Changed in version 1.7.0: When AUTH_LDAP_SERVER_URI is set to a callable, it is now passed a
positional request argument. Support for no arguments will continue for
backwards compatibility but will be removed in a future version.

AUTH_LDAP_START_TLS

Default: False

If True, each connection to the LDAP server will call
start_tls_s() [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPObject.start_tls_s] to enable TLS encryption over the standard
LDAP port. There are a number of configuration options that can be given to
AUTH_LDAP_GLOBAL_OPTIONS that affect the TLS connection. For example,
ldap.OPT_X_TLS_REQUIRE_CERT [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.OPT_X_TLS_REQUIRE_CERT] can be set to ldap.OPT_X_TLS_NEVER [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.OPT_X_TLS_NEVER]
to disable certificate verification, perhaps to allow self-signed certificates.

AUTH_LDAP_USER_QUERY_FIELD

Default: None

The field on the user model used to query the authenticating user in the
database. If unset, uses the value of USERNAME_FIELD of the model class.
When set, the value used to query is obtained through the
AUTH_LDAP_USER_ATTR_MAP.

AUTH_LDAP_USER_ATTRLIST

Default: None

A list of attribute names to load for the authenticated user. Normally, you can
ignore this and the LDAP server will send back all of the attributes of the
directory entry. One reason you might need to override this is to get
operational attributes, which are not normally included:

AUTH_LDAP_USER_ATTRLIST = ["*", "+"]

AUTH_LDAP_USER_ATTR_MAP

Default: {}

A mapping from User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User] field names to LDAP
attribute names. A users’s User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User] object will
be populated from his LDAP attributes at login.

AUTH_LDAP_USER_DN_TEMPLATE

Default: None

A string template that describes any user’s distinguished name based on the
username. This must contain the placeholder %(user)s.

AUTH_LDAP_USER_FLAGS_BY_GROUP

Default: {}

A mapping from boolean User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User] field names to
distinguished names of LDAP groups. The corresponding field is set to True
or False according to whether the user is a member of the group.

Values may be strings for simple group membership tests or
LDAPGroupQuery instances for more complex
cases.

AUTH_LDAP_USER_SEARCH

Default: None

An LDAPSearch object that will locate a user
in the directory. The filter parameter should contain the placeholder
%(user)s for the username. It must return exactly one result for
authentication to succeed.

Module Properties

	
django_auth_ldap.version

	The library’s current version number as a 3-tuple.

	
django_auth_ldap.version_string

	The library’s current version number as a string.

Configuration

	
class django_auth_ldap.config.LDAPSearch

	
	
__init__(base_dn, scope, filterstr='(objectClass=*)')

	
	Parameters

	
	base_dn (str [https://docs.python.org/3/library/stdtypes.html#str]) – The distinguished name of the search base.

	scope (int [https://docs.python.org/3/library/functions.html#int]) – One of ldap.SCOPE_*.

	filterstr (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional filter string (e.g.
‘(objectClass=person)’). In order to be valid, filterstr must be
enclosed in parentheses.

	
class django_auth_ldap.config.LDAPSearchUnion

	
New in version 1.1.

	
__init__(*searches)

	
	Parameters

	searches (LDAPSearch) – Zero or more LDAPSearch objects. The result of the
overall search is the union (by DN) of the results of the underlying
searches. The precedence of the underlying results and the ordering
of the final results are both undefined.

	
class django_auth_ldap.config.LDAPGroupType

	The base class for objects that will determine group membership for various
LDAP grouping mechanisms. Implementations are provided for common group
types or you can write your own. See the source code for subclassing notes.

	
__init__(name_attr='cn')

	By default, LDAP groups will be mapped to Django groups by taking the
first value of the cn attribute. You can specify a different attribute
with name_attr.

	
class django_auth_ldap.config.PosixGroupType

	A concrete subclass of LDAPGroupType that
handles the posixGroup object class. This checks for both primary group
and group membership.

	
__init__(name_attr='cn')

	

	
class django_auth_ldap.config.MemberDNGroupType

	A concrete subclass of
LDAPGroupType that handles grouping
mechanisms wherein the group object contains a list of its member DNs.

	
__init__(member_attr, name_attr='cn')

	
	Parameters

	member_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute on the group object that contains
a list of member DNs. ‘member’ and ‘uniqueMember’ are common
examples.

	
class django_auth_ldap.config.NestedMemberDNGroupType

	Similar to MemberDNGroupType, except this
allows groups to contain other groups as members. Group hierarchies will be
traversed to determine membership.

	
__init__(member_attr, name_attr='cn')

	As above.

	
class django_auth_ldap.config.GroupOfNamesType

	A concrete subclass of MemberDNGroupType
that handles the groupOfNames object class. Equivalent to
MemberDNGroupType('member').

	
__init__(name_attr='cn')

	

	
class django_auth_ldap.config.NestedGroupOfNamesType

	A concrete subclass of
NestedMemberDNGroupType that handles the
groupOfNames object class. Equivalent to
NestedMemberDNGroupType('member').

	
__init__(name_attr='cn')

	

	
class django_auth_ldap.config.GroupOfUniqueNamesType

	A concrete subclass of MemberDNGroupType
that handles the groupOfUniqueNames object class. Equivalent to
MemberDNGroupType('uniqueMember').

	
__init__(name_attr='cn')

	

	
class django_auth_ldap.config.NestedGroupOfUniqueNamesType

	A concrete subclass of
NestedMemberDNGroupType that handles the
groupOfUniqueNames object class. Equivalent to
NestedMemberDNGroupType('uniqueMember').

	
__init__(name_attr='cn')

	

	
class django_auth_ldap.config.ActiveDirectoryGroupType

	A concrete subclass of MemberDNGroupType
that handles Active Directory groups. Equivalent to
MemberDNGroupType('member').

	
__init__(name_attr='cn')

	

	
class django_auth_ldap.config.NestedActiveDirectoryGroupType

	A concrete subclass of
NestedMemberDNGroupType that handles
Active Directory groups. Equivalent to
NestedMemberDNGroupType('member').

	
__init__(name_attr='cn')

	

	
class django_auth_ldap.config.OrganizationalRoleGroupType

	A concrete subclass of MemberDNGroupType
that handles the organizationalRole object class. Equivalent to
MemberDNGroupType('roleOccupant').

	
__init__(name_attr='cn')

	

	
class django_auth_ldap.config.NestedOrganizationalRoleGroupType

	A concrete subclass of
NestedMemberDNGroupType that handles the
organizationalRole object class. Equivalent to
NestedMemberDNGroupType('roleOccupant').

	
__init__(name_attr='cn')

	

	
class django_auth_ldap.config.LDAPGroupQuery

	Represents a compound query for group membership.

This can be used to construct an arbitrarily complex group membership query
with AND, OR, and NOT logical operators. Construct primitive queries with a
group DN as the only argument. These queries can then be combined with the
&, |, and ~ operators.

This is used by certain settings, including
AUTH_LDAP_REQUIRE_GROUP and
AUTH_LDAP_USER_FLAGS_BY_GROUP. An example is shown in
Limiting Access.

	
__init__(group_dn)

	
	Parameters

	group_dn (str [https://docs.python.org/3/library/stdtypes.html#str]) – The distinguished name of a group to test for
membership.

Backend

	
django_auth_ldap.backend.populate_user

	This is a Django signal that is sent when clients should perform additional
customization of a User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User] object. It is
sent after a user has been authenticated and the backend has finished
populating it, and just before it is saved. The client may take this
opportunity to populate additional model fields, perhaps based on
ldap_user.attrs. This signal has two keyword arguments: user is the
User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User] object and ldap_user is the
same as user.ldap_user. The sender is the
LDAPBackend class.

	
django_auth_ldap.backend.ldap_error

	This is a Django signal that is sent when we receive an
ldap.LDAPError [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPError] exception. The signal has three keyword arguments:

	context: one of 'authenticate', 'get_group_permissions', or
'populate_user', indicating which API was being called when the
exception was caught.

	user: the Django user being processed (if available).

	exception: the LDAPError [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPError] object itself.

The sender is the LDAPBackend class (or
subclass).

	
class django_auth_ldap.backend.LDAPBackend

	LDAPBackend has one method that may be
called directly and several that may be overridden in subclasses.

	
settings_prefix

	A prefix for all of our Django settings. By default, this is
'AUTH_LDAP_', but subclasses can override this. When different
subclasses use different prefixes, they can both be installed and
operate independently.

	
default_settings

	A dictionary of default settings. This is empty in
LDAPBackend, but subclasses can
populate this with values that will override the built-in defaults. Note
that the keys should omit the 'AUTH_LDAP_' prefix.

	
populate_user(username)

	Populates the Django user for the given LDAP username. This connects to
the LDAP directory with the default credentials and attempts to populate
the indicated Django user as if they had just logged in.
AUTH_LDAP_ALWAYS_UPDATE_USER is ignored (assumed True).

	
get_user_model(self)

	Returns the user model that
get_or_build_user() will
instantiate. By default, custom user models will be respected.
Subclasses would most likely override this in order to substitute a
proxy model [https://docs.djangoproject.com/en/stable/topics/db/models/#proxy-models].

	
authenticate_ldap_user(self, ldap_user, password)

	Given an LDAP user object and password, authenticates the user and
returns a Django user object. See Customizing Authentication.

	
get_or_build_user(self, username, ldap_user)

	Given a username and an LDAP user object, this must return a valid
Django user model instance. The username argument has already been
passed through
ldap_to_django_username().
You can get information about the LDAP user via ldap_user.dn and
ldap_user.attrs. The return value must be an (instance, created)
two-tuple. The instance does not need to be saved.

The default implementation looks for the username with a
case-insensitive query; if it’s not found, the model returned by
get_user_model() will be
created with the lowercased username. New users will not be saved to the
database until after the django_auth_ldap.backend.populate_user
signal has been sent.

A subclass may override this to associate LDAP users to Django users any
way it likes.

	
ldap_to_django_username(username)

	Returns a valid Django username based on the given LDAP username (which
is what the user enters). By default, username is returned
unchanged. This can be overridden by subclasses.

	
django_to_ldap_username(username)

	The inverse of
ldap_to_django_username().
If this is not symmetrical to
ldap_to_django_username(),
the behavior is undefined.

Change Log

2.0.0 - 2019-06-05

	Removed support for Python 2 and 3.4.

	Removed support for end of life Django 2.0.

	Added support for Django 2.2.

	Add testing and support for Python 3.7 with Django 1.11 and 2.1.

	When AUTH_LDAP_SERVER_URI is set to a callable, it is now passed a
positional request argument. Support for no arguments will continue for
backwards compatibility but will be removed in a future version.

	Added new AUTH_LDAP_NO_NEW_USERS to prevent the creation of new
users during authentication. Any users not already in the Django user
database will not be able to login.

1.6.1 - 2018-06-02

	Renamed requirements.txt to dev-requirements.txt to fix Read the Docs
build.

1.6.0 - 2018-06-02

	Updated LDAPBackend.authenticate() signature to match Django’s
documentation.

	Fixed group membership queries with DNs containing non-ascii characters on
Python 2.7.

	The setting AUTH_LDAP_CACHE_TIMEOUT now replaces deprecated
AUTH_LDAP_CACHE_GROUPS and AUTH_LDAP_GROUP_CACHE_TIMEOUT. In addition to
caching groups, it also controls caching of distinguished names (which were
previously cached by default). A compatibility shim is provided so the
deprecated settings will continue to work.

1.5.0 - 2018-04-18

	django-auth-ldap is now hosted at
https://github.com/django-auth-ldap/django-auth-ldap.

	Removed NISGroupType class. It searched by attribute nisNetgroupTriple, which
has no defined EQAULITY rule.

	The python-ldap library is now initialized with bytes_mode=False,
requiring all LDAP values to be handled as Unicode text (str in Python 3
and unicode in Python 2), not bytes. For additional information, see the
python-ldap documentation on bytes mode [https://python-ldap.readthedocs.io/en/latest/bytes_mode.html#text-bytes].

	Removed deprecated function LDAPBackend.get_or_create_user(). Use
get_or_build_user() instead.

1.4.0 - 2018-03-22

	Honor the attrlist argument to AUTH_LDAP_GROUP_SEARCH

	Backwards incompatible: Removed support for Django < 1.11.

	Support for Python 2.7 and 3.4+ now handled by the same dependency,
python-ldap >= 3.0 [https://pypi.org/project/python-ldap/].

1.3.0 - 2017-11-20

	Backwards incompatible: Removed support for obsolete versions of
Django (<=1.7, plus 1.9).

	Delay saving new users as long as possible. This will allow
AUTH_LDAP_USER_ATTR_MAP to populate required fields before creating
a new Django user.

LDAPBackend.get_or_create_user() is now
get_or_build_user() to avoid
confusion. The old name may still be overridden for now.

	Support querying by a field other than the username field with
AUTH_LDAP_USER_QUERY_FIELD.

	New method
authenticate_ldap_user() to
provide pre- and post-authentication hooks.

	Add support for Django 2.0.

1.2.16 - 2017-09-30

	Better cache key sanitizing.

	Improved handling of LDAPError. A case existed where the error would not get
caught while loading group permissions.

1.2.15 - 2017-08-17

	Improved documentation for finding the official repository and contributing.

1.2.14 - 2017-07-24

	Under search/bind mode, the user’s DN will now be cached for
performance.

1.2.13 - 2017-06-19

	Support selective group mirroring with AUTH_LDAP_MIRROR_GROUPS and
AUTH_LDAP_MIRROR_GROUPS_EXCEPT.

	Work around Django 1.11 bug with multiple authentication backends.

1.2.12 - 2017-05-20

	Support for complex group queries via
LDAPGroupQuery.

1.2.11 - 2017-04-22

	Some more descriptive object representations.

	Improved tox.ini organization.

1.2.9 - 2017-02-14

	Ignore python-ldap documentation and accept ldap.RES_SEARCH_ENTRY from
ldap.LDAPObject.result() [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPObject.result].

1.2.8 - 2016-04-18

	Add AUTH_LDAP_USER_ATTRLIST to override the set of attributes
requested from the LDAP server.

1.2.7 - 2015-09-29

	Support Python 3 with pyldap [https://pypi.org/project/pyldap/].

1.2.6 - 2015-03-29

	Performance improvements to group mirroring (from
Denver Janke [https://bitbucket.org/denverjanke]).

	Add django_auth_ldap.backend.ldap_error signal for custom handling of
LDAPError [https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPError] exceptions.

	Add django_auth_ldap.backend.LDAPBackend.default_settings for
per-subclass default settings.

1.2.5 - 2015-01-30

	Fix interaction between AUTH_LDAP_AUTHORIZE_ALL_USERS and
AUTH_LDAP_USER_SEARCH.

1.2.4 - 2014-12-28

	Add support for nisNetgroup groups (thanks to Christopher Bartz).

1.2.3 - 2014-11-18

	Improved escaping for filter strings.

	Accept (and ignore) arbitrary keyword arguments to
LDAPBackend.authenticate.

1.2.2 - 2014-09-22

	Include test harness in source distribution. Some package maintainers find
this helpful.

1.2.1 - 2014-08-24

	More verbose log messages for authentication failures.

1.2.0 - 2014-04-10

	django-auth-ldap now provides experimental Python 3 support. Python 2.5 was
dropped.

To sum up, django-auth-ldap works with Python 2.6, 2.7, 3.3 and 3.4.

Since python-ldap isn’t making progress toward Python 3, if you’re using
Python 3, you need to install a fork:

$ pip install git+https://github.com/rbarrois/python-ldap.git@py3

Thanks to Aymeric Augustin [https://myks.org/en/] for making this happen.

1.1.8 - 2014-02-01

	Update LDAPSearchUnion to work for group
searches in addition to user searches.

	Tox no longer supports Python 2.5, so our tests now run on 2.6 and 2.7 only.

1.1.7 - 2013-11-19

	Bug fix: AUTH_LDAP_GLOBAL_OPTIONS could be ignored in some cases
(such as populate_user()).

1.1.5 - 2013-10-25

	Support POSIX group permissions with no gidNumber attribute.

	Support multiple group DNs for *_FLAGS_BY_GROUP.

1.1.4 - 2013-03-09

	Add support for Django 1.5’s custom user models.

1.1.3 - 2013-01-05

	Reject empty passwords by default.

Unless AUTH_LDAP_PERMIT_EMPTY_PASSWORD is set to True,
LDAPBackend.authenticate() will immediately return None if the password is
empty. This is technically backwards-incompatible, but it’s a more secure
default for those LDAP servers that are configured such that binds without
passwords always succeed.

	Add support for pickling LDAP-authenticated users.

Contributing

If you’d like to contribute, the best approach is to send a well-formed pull
request, complete with tests and documentation. Pull requests should be
focused: trying to do more than one thing in a single request will make it more
difficult to process.

If you have a bug or feature request you can try logging an issue [https://github.com/django-auth-ldap/django-auth-ldap/issues].

There’s no harm in creating an issue and then submitting a pull request to
resolve it. This can be a good way to start a conversation and can serve as an
anchor point.

Development

To get set up for development, activate your virtualenv and use pip to install
from dev-requirements.txt:

$ pip install -r dev-requirements.txt

To run the tests:

$ django-admin test --settings tests.settings

To run the full test suite in a range of environments, run tox [https://tox.readthedocs.io/] from the root
of the project:

$ tox

This includes some static analysis to detect potential runtime errors and style
issues.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 django_auth_ldap	

 	
 	
 django_auth_ldap.backend	

 	
 	
 django_auth_ldap.config	

Index

 _
 | A
 | D
 | G
 | L
 | M
 | N
 | O
 | P
 | S
 | V

_

 	
 	__init__() (django_auth_ldap.config.ActiveDirectoryGroupType method)

 	(django_auth_ldap.config.GroupOfNamesType method)

 	(django_auth_ldap.config.GroupOfUniqueNamesType method)

 	(django_auth_ldap.config.LDAPGroupQuery method)

 	(django_auth_ldap.config.LDAPGroupType method)

 	(django_auth_ldap.config.LDAPSearch method)

 	(django_auth_ldap.config.LDAPSearchUnion method)

 	(django_auth_ldap.config.MemberDNGroupType method)

 	(django_auth_ldap.config.NestedActiveDirectoryGroupType method)

 	(django_auth_ldap.config.NestedGroupOfNamesType method)

 	(django_auth_ldap.config.NestedGroupOfUniqueNamesType method)

 	(django_auth_ldap.config.NestedMemberDNGroupType method)

 	(django_auth_ldap.config.NestedOrganizationalRoleGroupType method)

 	(django_auth_ldap.config.OrganizationalRoleGroupType method)

 	(django_auth_ldap.config.PosixGroupType method)

A

 	
 	ActiveDirectoryGroupType (class in django_auth_ldap.config)

 	
 AUTH_LDAP_ALWAYS_UPDATE_USER

 	setting

 	
 AUTH_LDAP_AUTHORIZE_ALL_USERS

 	setting

 	
 AUTH_LDAP_BIND_AS_AUTHENTICATING_USER

 	setting

 	
 AUTH_LDAP_BIND_DN

 	setting

 	
 AUTH_LDAP_BIND_PASSWORD

 	setting

 	
 AUTH_LDAP_CACHE_TIMEOUT

 	setting

 	
 AUTH_LDAP_CONNECTION_OPTIONS

 	setting

 	
 AUTH_LDAP_DENY_GROUP

 	setting

 	
 AUTH_LDAP_FIND_GROUP_PERMS

 	setting

 	
 AUTH_LDAP_GLOBAL_OPTIONS

 	setting

 	
 AUTH_LDAP_GROUP_SEARCH

 	setting

 	
 AUTH_LDAP_GROUP_TYPE

 	setting

 	
 AUTH_LDAP_MIRROR_GROUPS

 	setting

 	
 	
 AUTH_LDAP_MIRROR_GROUPS_EXCEPT

 	setting

 	
 AUTH_LDAP_NO_NEW_USERS

 	setting

 	
 AUTH_LDAP_PERMIT_EMPTY_PASSWORD

 	setting

 	
 AUTH_LDAP_REQUIRE_GROUP

 	setting

 	
 AUTH_LDAP_SERVER_URI

 	setting

 	
 AUTH_LDAP_START_TLS

 	setting

 	
 AUTH_LDAP_USER_ATTR_MAP

 	setting

 	
 AUTH_LDAP_USER_ATTRLIST

 	setting

 	
 AUTH_LDAP_USER_DN_TEMPLATE

 	setting

 	
 AUTH_LDAP_USER_FLAGS_BY_GROUP

 	setting

 	
 AUTH_LDAP_USER_QUERY_FIELD

 	setting

 	
 AUTH_LDAP_USER_SEARCH

 	setting

 	authenticate_ldap_user() (django_auth_ldap.backend.LDAPBackend method)

D

 	
 	django_auth_ldap (module)

 	django_auth_ldap.backend (module)

 	
 	django_auth_ldap.config (module)

 	django_to_ldap_username() (django_auth_ldap.backend.LDAPBackend method)

G

 	
 	get_or_build_user() (django_auth_ldap.backend.LDAPBackend method)

 	get_user_model() (django_auth_ldap.backend.LDAPBackend method)

 	
 	GroupOfNamesType (class in django_auth_ldap.config)

 	GroupOfUniqueNamesType (class in django_auth_ldap.config)

L

 	
 	ldap_error (in module django_auth_ldap.backend)

 	ldap_to_django_username() (django_auth_ldap.backend.LDAPBackend method)

 	LDAPBackend (class in django_auth_ldap.backend)

 	LDAPBackend.default_settings (in module django_auth_ldap.backend)

 	
 	LDAPBackend.settings_prefix (in module django_auth_ldap.backend)

 	LDAPGroupQuery (class in django_auth_ldap.config)

 	LDAPGroupType (class in django_auth_ldap.config)

 	LDAPSearch (class in django_auth_ldap.config)

 	LDAPSearchUnion (class in django_auth_ldap.config)

M

 	
 	MemberDNGroupType (class in django_auth_ldap.config)

N

 	
 	NestedActiveDirectoryGroupType (class in django_auth_ldap.config)

 	NestedGroupOfNamesType (class in django_auth_ldap.config)

 	
 	NestedGroupOfUniqueNamesType (class in django_auth_ldap.config)

 	NestedMemberDNGroupType (class in django_auth_ldap.config)

 	NestedOrganizationalRoleGroupType (class in django_auth_ldap.config)

O

 	
 	OrganizationalRoleGroupType (class in django_auth_ldap.config)

P

 	
 	populate_user (in module django_auth_ldap.backend)

 	
 	populate_user() (django_auth_ldap.backend.LDAPBackend method)

 	PosixGroupType (class in django_auth_ldap.config)

S

 	
 	
 setting

 	AUTH_LDAP_ALWAYS_UPDATE_USER

 	AUTH_LDAP_AUTHORIZE_ALL_USERS

 	AUTH_LDAP_BIND_AS_AUTHENTICATING_USER

 	AUTH_LDAP_BIND_DN

 	AUTH_LDAP_BIND_PASSWORD

 	AUTH_LDAP_CACHE_TIMEOUT

 	AUTH_LDAP_CONNECTION_OPTIONS

 	AUTH_LDAP_DENY_GROUP

 	AUTH_LDAP_FIND_GROUP_PERMS

 	AUTH_LDAP_GLOBAL_OPTIONS

 	AUTH_LDAP_GROUP_SEARCH

 	AUTH_LDAP_GROUP_TYPE

 	AUTH_LDAP_MIRROR_GROUPS

 	AUTH_LDAP_MIRROR_GROUPS_EXCEPT

 	AUTH_LDAP_NO_NEW_USERS

 	AUTH_LDAP_PERMIT_EMPTY_PASSWORD

 	AUTH_LDAP_REQUIRE_GROUP

 	AUTH_LDAP_SERVER_URI

 	AUTH_LDAP_START_TLS

 	AUTH_LDAP_USER_ATTRLIST

 	AUTH_LDAP_USER_ATTR_MAP

 	AUTH_LDAP_USER_DN_TEMPLATE

 	AUTH_LDAP_USER_FLAGS_BY_GROUP

 	AUTH_LDAP_USER_QUERY_FIELD

 	AUTH_LDAP_USER_SEARCH

V

 	
 	version (in module django_auth_ldap)

 	
 	version_string (in module django_auth_ldap)

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Django Authentication Using LDAP

 		
 Installation

 		
 Authentication

 		
 Server Config

 		
 Search/Bind

 		
 Search Unions

 		
 Direct Bind

 		
 Customizing Authentication

 		
 Notes

 		
 Working With Groups

 		
 Types of Groups

 		
 Finding Groups

 		
 Limiting Access

 		
 User objects

 		
 Populating Users

 		
 Easy Attributes

 		
 Updating Users

 		
 Direct Attribute Access

 		
 Permissions

 		
 Using Groups Directly

 		
 Group Mirroring

 		
 Non-LDAP Users

 		
 Multiple LDAP Configs

 		
 Custom Behavior

 		
 Subclassing LDAPBAckend

 		
 Using default_settings

 		
 Overriding default_settings

 		
 Logging

 		
 Performance

 		
 Example Configuration

 		
 Reference

 		
 Settings

 		
 AUTH_LDAP_ALWAYS_UPDATE_USER

 		
 AUTH_LDAP_AUTHORIZE_ALL_USERS

 		
 AUTH_LDAP_BIND_AS_AUTHENTICATING_USER

 		
 AUTH_LDAP_BIND_DN

 		
 AUTH_LDAP_BIND_PASSWORD

 		
 AUTH_LDAP_CACHE_TIMEOUT

 		
 AUTH_LDAP_CONNECTION_OPTIONS

 		
 AUTH_LDAP_DENY_GROUP

 		
 AUTH_LDAP_FIND_GROUP_PERMS

 		
 AUTH_LDAP_GLOBAL_OPTIONS

 		
 AUTH_LDAP_GROUP_SEARCH

 		
 AUTH_LDAP_GROUP_TYPE

 		
 AUTH_LDAP_MIRROR_GROUPS

 		
 AUTH_LDAP_MIRROR_GROUPS_EXCEPT

 		
 AUTH_LDAP_PERMIT_EMPTY_PASSWORD

 		
 AUTH_LDAP_REQUIRE_GROUP

 		
 AUTH_LDAP_NO_NEW_USERS

 		
 AUTH_LDAP_SERVER_URI

 		
 AUTH_LDAP_START_TLS

 		
 AUTH_LDAP_USER_QUERY_FIELD

 		
 AUTH_LDAP_USER_ATTRLIST

 		
 AUTH_LDAP_USER_ATTR_MAP

 		
 AUTH_LDAP_USER_DN_TEMPLATE

 		
 AUTH_LDAP_USER_FLAGS_BY_GROUP

 		
 AUTH_LDAP_USER_SEARCH

 		
 Module Properties

 		
 Configuration

 		
 Backend

 		
 Change Log

 		
 2.0.0 - 2019-06-05

 		
 1.6.1 - 2018-06-02

 		
 1.6.0 - 2018-06-02

 		
 1.5.0 - 2018-04-18

 		
 1.4.0 - 2018-03-22

 		
 1.3.0 - 2017-11-20

 		
 1.2.16 - 2017-09-30

 		
 1.2.15 - 2017-08-17

 		
 1.2.14 - 2017-07-24

 		
 1.2.13 - 2017-06-19

 		
 1.2.12 - 2017-05-20

 		
 1.2.11 - 2017-04-22

 		
 1.2.9 - 2017-02-14

 		
 1.2.8 - 2016-04-18

 		
 1.2.7 - 2015-09-29

 		
 1.2.6 - 2015-03-29

 		
 1.2.5 - 2015-01-30

 		
 1.2.4 - 2014-12-28

 		
 1.2.3 - 2014-11-18

 		
 1.2.2 - 2014-09-22

 		
 1.2.1 - 2014-08-24

 		
 1.2.0 - 2014-04-10

 		
 1.1.8 - 2014-02-01

 		
 1.1.7 - 2013-11-19

 		
 1.1.5 - 2013-10-25

 		
 1.1.4 - 2013-03-09

 		
 1.1.3 - 2013-01-05

 		
 Contributing

 		
 Development

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

